
Street-fighting tricks for software engineers

Julien Perrochet
Software Engineer, Switzerland

FP & Build System
@0xTelegraph



TOC

● The Environment & Background
● Your (Typical?) Mission 
● Embrace Eventual Consistency
● Trrrrrrade-Offs: Benefits, Risks & Downsides



Enterprise Software Engineering





You’re given:

● Some CPUs 
● Couple GB of RAM
● A JVM & Scala Compiler



Your Mission

Deliver Value!

Not your mission:

Fix the Overall Architecture



Get the most out your landscape.
Quickly.



Enter Pre-Fetching

Either things are in RAM or they don't exist.

● Pre-compute everything you need
● Store it in RAM



Back To Our Landscape



Why would you do that!?

RAM is seriously undervalued as a place of 
temporary storage.



What’s Easier To Request?

Can you setup and maintain a (distributed) cache for me?

vs.

Can you allocate me an additional GB of RAM?



Benefits

● (Predictable) Performance: fast if it’s there, fast if it’s not
● Availability: data source can happily bail out for a while!
● Internal consistency: done right, no weird cache related bugs
● Easy to Wipe The Pre-Computed Stuff™ – just restart your service

For your PM/PO:

● Speed Premium: Limited amount of time to try things out? Get the POC out 
the doors faster, increase the chances of success.

● Unlock use cases by experimenting more.



Limitations & Downsides

● Applies for read-only stuff
● Eventual Consistency
● RAM & pre-compute speed limits
● Easy to over-do



Final Words

Services usually not written once and forgotten:

● Starts with an experiment
○ Sometimes fails
○ Keep if valuable

● Refactor & Iterate for moar value

 Pre-fetching lets you get to value faster: clumsy but fast!



Try it Out, Q&A

Library*- https://github.com/Shastick/zio-prefetcher/

Complaints - https://twitter.com/@0xtelegraph

Other writings - https://j3t.ch/

* Yes! You too can try out this amazing foot-gun in no time!

https://github.com/Shastick/zio-prefetcher/
https://twitter.com/@0xtelegraph
https://j3t.ch/

